

Australian National University

Unsupervised Accuracy Estimation

Given a trained classifier, the overall goal is to estimate its accuracy on various test datasets without labels

Motivation

- Rotation prediction is self-supervised: we can obtain its rotation labels freely and calculate its accuracy on any test set;
- Can we predict the classifier performance from the accuracy of rotation prediction?

Multi-task framework

We train a multi-task network for both semantic classification and rotation prediction

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments?

Weijian Deng Stephen Gould Liang Zheng Australian National University

Correlation Study

- Synthetic test sets
- **Data synthesis:** using image transforms to generate many datasets

original set

synthetic set 1

synthetic set 2

Correlation study

Test our multi-task network on them and calculate: a) sematic classification accuracy;

Measure the accuracy relationship between two types of tasks

- \succ We consistently observe a strong linear relationship (*Pearson Correlation r > 0.88*) between the accuracy of two tasks;
- > If the multi-task network is good at predicting rotations, it is most likely to achieve good object recognition accuracy under the same environment, and vice versa

synthetic set 3

b) rotation prediction accuracy

Correlation study across different backbones

	VGG11	VGG19	ResNet26	ResNet44	Dense40
Class. Acc.	92.53	92.51	92.84	93.73	94.75
Rot. Acc.	91.32	92.07	87.84	88.81	91.28
Cor. (<i>r</i>)	0.990	0.987	0.975	0.981	0.981

Correlation when the number of classes is large

Backbone	CIFAR-10		CIFAR-100	
	Cor. (r)	Cor. (r)	Class Acc.	Rot. Acc.
ResNet26	0.975	0.918	69.31	73.18
ResNet44	0.981	0.910	71.38	75.60
Dense40	0.981	0.950	74.55	75.20

Linear Regression for Accuracy Estimation

$$a^{cls} = w_1 a^{rot} + w_0$$
, where

Reference

1. Deng, W., & Zheng, L. Are Labels Always Necessary for Classifier Accuracy Evaluation? In CVPR, 2021 2. Gidaris, S., et.al. Unsupervised representation learning by predicting image rotations. In ICLR, 2018.

The code is available at <u>http://weijiandeng.xyz</u>

CIFAR-10 Setup

The strong linear correlation is maintained when using different backbones

CIFAR-100 Setup

When the number of classes is huge, the correlation decreases but it still has a high value

re $w_1, w_0 \in \mathbb{R}$ are linear regression parameters

It feasible to estimate classifier accuracy using rotation prediction performance which can be easily obtained